Digital Democracy:

Personal Affiliation Extraction

Kyle Tanemura, Francis Yuen, Timothy Chu, Josh Choi
Dr. Foaad Khosmood

June 14, 2017



1 Introduction and Background

Digital Democracy is an online, searchable archive for all political statements and
activity occurring in legislative hearings in California and New York. Before the
introduction of this platform, a person would have to travel to a location where all
the hearing data was held in order to get the information that they are interested
in. For this project, we were interested in automatically determining the best affili-
ation given an utterance in a legislative hearing. Consider the utterance: “Christian
Molina from Sierra Club California in support.” From this example, we want to be
able to determine that Christian Molina is affiliated with Sierra Club California. In
the case where they are multiple organizations which the speaker might be affiliated
with, we want to choose the best one.

2 Design and Development

Curated List of Inverted Index of
Organizations Organizations

- '|
List of Utterances Feature Extraction Score Affiliations in Grab Top Ranked
from Utterances Utterance Affiliations for each
Utterance
J

Figure 1: System Flow

The overall design of our system involves inputting a hand-curated list of orga-
nizations and the list of spoken utterances to output the top ranked affiliation for
each utterance. For each utterance, we extract a list of affiliations/features using
the inverted index of organizations and score the individual affiliations using a given
linear equation of weights multiplied with each normalized feature. Once all scores
have been calculated, the top scoring affiliation will be outputted onto the console
for further analysis and measurement.

2.1 Creating a List of Affiliations

To create the list of affiliations the system will take in the dd_orgs document and
create an inverted index from all the given organizations. The inverted index involves
splitting each organization on whitespace delimiters to create a list of individual
words. Then each individual word is added into the inverted index tree with each
node representing the word and hashing the word to search for words in constant
speed. Subsequent words in an organization get added one level deeper into the
tree until the end is reached which then the last word is labeled as the ending. If a
common word is found within a tree level, a subtree will be created from that tree
node representing the rest of the organization words.

For each affiliation we extract from the utterance we must construct a feature
vector, represented as a tuple, so the affiliation can be assigned a score. The first step



is tokenizing the utterance using NLTK. We then iterate over the tokens looking for
organization starting words. Once an organization is found its starting index, ending
index, and the surrounding words are stored immediately. After the extraction
algorithm has iterated over the whole utterance, and found every potential affiliation,
it calculates the distance from the name of the person to each affiliation using the
affiliations’ starting and ending index. Then the program extracts the two tokens to
the left and right of the affiliation (4 total, returning empty strings if the affiliation
is too close to the start or end of an utterance) along with the surrounding words
part of speech (POS) tag. The distance to name and surrounding words are added
to the feature vector tuple and a list of these tuples is passed to our algorithm for
scoring for each utterance.

2.2 Scoring Algorithm

The scoring algorithm takes the summation of feature scores. Each feature score is
computed by taking the product of the feature weight and the result of the feature
scoring function. Our algorithm have ten features in total. They are:

1. Left Left Top Word Score 6. Left Top POS Score

2. Left Top Word Score 7. Right Top POS Score

3. Right Top Word Score 8. Right Right Top POS Score
4. Right Right Top Word Score 9. Distance to Name Score

5. Left Left Top POS Score 10. Affiliation Name Length Score

Features 1—4 are scored by looking up the positional word in the positional top
words dictionary. For example, the left left top word score would use the word that
is 2 words left of the affiliation to look up in the left left top word dictionary. The
top word dictionary is generated beforehand by counting the number of occurrences
a word appears in a position from a dedicated training set. The count is then
normalized so all values in top words would range from zero to one. The Feature
1—4 scoring function will look up the word in the top words dictionary, if that word
is found the value is returned, else the scoring function will return zero. Features
4—8 are scored similarly to Features 1—4 where a top POS dictionary is created
beforehand and the scoring function will lookup the POS and return the score.
The Feature 9 scoring function takes the distance (number of words away) of the
affiliation from the name as input and returns the inverse of that value. During our
utterance examination process, we found that affiliations that are closer to the name
tends to be more accurate thus the inverse distance will tend to favor affiliations
that are closer to the name. Lastly, the Feature 10 scoring function takes in a count
of the number of words in the current affiliation and the number of words of the
longest affiliation name and returns the quotient of the two. This is made to favor
affiliations with longer names. A longer match of the organization name is bound
to be more accurate.



3 Results and Conclusions

To test our program we dynamically hand tagged 50 utterances from each run of our
program. Our first test run was done using string comparison of potential affiliations
with the original provided list dd_orgs and an additional list of cities we scraped
from online. This system was extremely slow, +6 hours of run time was needed just
to extract all affiliations from the utterances, and was not really improvable due to
needing a lot of time between test runs. Development of the inverted index and
its use in subsequent runs reduced this runtime to below 1 minute. Once we were
using this inverted index we were able to do our first test run actually ranking the
affiliations returned from the utterances. This first run correctly identified the top
affiliation for 62% of our test set utterances, based on what we dynamically hand
tagged as the strongest affiliation. After curating dd_orgs we constructed a new
index and played around with the weights of our scoring algorithm. On our final
test run, we recorded an accuracy of 76% on the same test set as our initial runs.

Our program design allows us to identify personal affiliations with reasonable
accuracy, but it is limited in the fact that it must recognize the affiliation and
have it stored in its inverted index for the affiliation to be identified. Additional
improvements that can be made would be integrating the word the DD Orgs group
did in their project. By identifying different names for the same affiliation, we could
more accurately cluster people with the same /similar affiliations.



	Introduction and Background
	Design and Development
	Creating a List of Affiliations
	Scoring Algorithm

	Results and Conclusions

